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1. SUPPLEMENTAL METHODS

1.1 Cases where the structure seems incompatible with its conservation pattern 
Even after filtering out proteins with a low-quality alignment, there are still some cases where the structure does not seem to match its conservation pattern, as denoted by a negative ConQuass score. For example, when using the 50%-filtering, 2.59% of the proteins (71 out of 2744) were still assigned a negative score. In most cases, closer examination can provide an explanation for the low score. Some representative examples are shown in Figure S4. We will now study these examples for the purpose of illustrating how to interpret a low ConQuass score when the structure seems correct.

The most prevalent case is illustrated in Figure S4A. When a structure has a binding partner in-vivo, the interaction interface is often conserved, especially if the partners are obligomers (Mintseris and Weng, 2005). If ConQuass is applied for one of the interacting partners by itself, the interface residues would seem to be accessible, which could greatly lower the structure’s score. In many cases this can be solved by giving the ConQuass score for the biological complex, as inferred by PQS, instead of for the individual chain. Indeed, when assigning the scores to individual chains, the ConQuass scores were shifted towards lower values (p<2.2e-16, Wilcoxon signed-rank test), and more structures were assigned a negative score (12.5% instead of 7.9%). However, in many cases the interaction partner is missing in the PDB file. For example, the signalling protein Glnk1 (Figure S4A) is missing its partner, the ammonia channel Amt1, in the PDB entry 2j9c (Yildiz, et al., 2007). As a consequence, Glnk1 exposes the conserved residues composing the binding interface, and was assigned a negative ConQuass score of -0.19. A similar effect was observed for proteins that are part of a much larger structural complex. For example, the ribosomal protein L14 is located at the core of the ribosomal machinery (Davies, et al., 1996), and therefore, in-vivo it is in contact with many other of the ribosomal subunits, and the individual chain displays an overall rather conserved surface (Figure S4B).
The third example is an antibody protein bound to its antigen (Figure S4C). Here, the residues at the binding interface are variable, as the binding partner is different for each antigen, while the rest of the antigen is relatively conserved. It is not surprising that this case was assigned a negative ConQuass score (-0.2), since the buried interface is variable while the exposed surface is conserved.

We have manually examined all the structures in our dataset which are predicted to have a high quality alignment, yet received a negative ConQuass score. Many of these could be classified to one of the cases described above. In some cases, the problem could be traced back to a poor multiple alignment constructed by ConSurf-DB, and manually fixing the alignment by removing distant homologues greatly elevated the ConQuass score. While this shows that our measures for detecting a bad alignment could still be improved, it also illustrates that ConQuass could be used for improving the ConSurf-DB protocol, or generally aid in constructing an alignment when a structural model is present.

1.2 Performance of ConQuass on the CASP7 dataset

For the CASP7 dataset, six targets could not be ranked, because their native structure did not have any ConSurf-DB information. Ten additional targets were cancelled by CASP or had no corresponding native structure listed in the CASP website. ConQuass score was given to all the full-atom models of the remaining 88 targets. As for the CASP8 dataset (see section 3.2.2), calculations were performed on the set of models and targets that were ranked by all participating MQAPs. To avoid excluding too many models, only the 16 participating MQAPs which scored at least 15,000 models were used.
The sets of correlation values between the scores and GDT-TS values for each MQAP are plotted in Figure S5A. Our results agree with those previously published 
 ADDIN EN.CITE 
(Cozzetto, et al., 2007; Wallner and Elofsson, 2008)
. The best performing MQAP is Pcons (634), with a mean correlation of 0.889, significantly higher than any other method. Pcons uses the set of all decoys as its input and ranks them using a consensus approach (Wallner and Elofsson, 2007), so it is perhaps not surprising that it scores much higher than MQAPs whose input is only a single structure. The second best MQAP is Lee (556), with a mean correlation of 0.824. The group produced their own structural model for each target, and ranked the decoys according to how similar they were to their model (Cozzetto, et al., 2007). While these two methods performed best within the context of the CASP7 experiment, their methodologies might not be applicable to many real-life scenarios. The third best MQAP was Circle-QA (713, mean correlation 0.794), a method that uses single structures whose approach is close to that of Verify3D (Terashi, et al., 2007). ConQuass (999, Figure S5A; gray) ranked tenth overall, with a mean correlation of 0.71. As for the CASP8 dataset, the relative performance of ConQuass is better when selecting the targets with the highest quality alignment (Figure S5B), and integrating its score with Circle-QA, the best performing single-structure MQAP in CASP7, significantly improves its performance (p-value=2.6e-12, see section S1.4).
The global relation between the GDT-TS and MQAP scores for all models of all CASP7 targets is shown in Figure S6A. The overall correlation is high (0.758), especially when filtering for targets with a high quality alignment (0.903 using the 20% filtering, Figure S6A; red). Figure S6B presents these results in a way that is more intuitive for interpreting the score given to a model by ConQuass. If a model is assigned a very low ConQuass score (below -0.041), it is expected to be of rather low quality (median GDT-TS 18.5, most GDT-TS values in the range [12.8, 26.4]). However, if a model is assigned a very high ConQuass score (above 0.12), it will very rarely be a low quality structure (median GDT-TS 73.3, most GDT-TS values in the range [61.7, 83.9]).

1.3 Differences from the results of the CASP8 proceedings

There are some obvious differences when comparing the ranking of the pure single structure MQAPs given in this paper (Figure 4B) and the ranking published in the CASP8 proceeding (Cozzetto, et al., 2009). This discrepancy is explained by two main differences between our protocol and the CASP protocol.

First, in the CASP analysis, the correlation values for each target are transformed into Z-scores, and then negative Z-scores are set to zero. As a consequence, all the correlation values that are below average for a given target are treated as equal, making comparison between MQAPs that have a lower-than-average performance problematic. Since many of the participants in CASP8 were consensus-based methods, which are often much better than all single-structure methods, many of the single-structure methods were frequently below average, and thus many of their Z-scores were negative (for example, this happens for 46% of the Z-scores of the CIRCLE (396) method). In this case, this factor did not make a very large difference in the ranking of the single structure methods. However, it is easy to see that a few additional consensus-based MQAPs participating in CASP would cause almost all single structure methods to get an average Z-score close to zero, which would not allow any meaningful comparison between them.

The second, more influential difference between our analysis and the CASP analysis regards the set of models considered for measuring the performance of each MQAP. For example, the method MULTICOM-CMFR (069) seems to perform much better than MULTICOM-REFINE (013) according to the CASP analysis.  However, CMFR ranked only a little more than 20,000 models, while REFINE ranked almost 35,000 models. When REFINE is tested on the set of models ranked by CMFR, its performance is improved (Figure S7). It can be seen that CMFR does not offer any noticeable improvement over REFINE, beyond selecting the easier set of models to rank (in reality, the methodology of CMFR is similar to that of REFINE, see the CASP8 abstracts in http://predictioncenter.org/casp8/doc/CASP8_book.pdf). To avoid this problem, we performed all our calculations on the set of models ranked by all the considered MQAPs.

1.4 Comparison of the integration MQAPs with the original MQAPs
For each of the three methods that were integrated with ConQuass, Circle-QA for the CASP7 dataset, and QMEANfamily and MULTICOM-REFINE for the CASP8 dataset, we checked if the integration truly improved the original method’s score. Therefore, for each such method, we limited the analysis only to models that were ranked by both methods, and calculated the Pearson correlation between the MQAP scores and the GDT-TS values for each of the remaining targets. For all three methods, the correlation values after the integration were significantly shifted towards higher values (Figure S8, p ≈ 2.6e-12, 4.2e-14 and 1.1e-08 for Circle-QA, QMEANfamily and MULTICOM-REFINE respectively, Wilcoxon signed-rank test), indicating that the integrated approach was better than the original MQAP.

1.5 Comparison with the results of Mihalek et al.

Similarly to the Selection Clustering Weight (SCW) score introduced by Mihalek and coworkers (Mihalek, et al., 2003), our method uses evolutionary information. However, the conservation is calculated differently, using ConSurf (Glaser, et al., 2003) rather than the Evolutionary Trace (Mihalek, et al., 2004), and the information is also utilized differently, calculating the compatibility of the conservation to the accessibility, instead of the degree of clustering of the conserved residues. 

Mihalek et al. introduced three z-score variants for the SCW score, namely zS, zA and zSA, and measured the performance of each by rating several selected decoy sets from the Decoys’R’Us database (Samudrala and Levitt, 2000), and checking how many of the decoys were assigned a lower score than the native structure. Of these three measures, zS achieved the best performance, ranking 78.1% of the decoys below their corresponding native structure.
For comparison with ConQuass’ performance, we downloaded the same 33 decoy sets from the Decoys’R’Us website. The conservation information for each decoy set was taken from the Consurf-DB database for the native structure (Goldenberg, et al., 2009), and the conservation was aligned to each decoy as was done for the CASP dataset (see section 2.4). Two decoy sets – 1gdm and 1sn3, containing 29 and 660 decoys respectively – had no ConSurf-DB information and were removed. Of the remaining sets, 11 decoy structures were either missing from the Decoys’R’Us website or had invalid PDB files. Our analysis was performed on the remaining 8384 decoys. The results in Table S4 indicate that for the 31 remaining decoy sets, the percent of decoys rated below the native structure was 91.9% (7709 out of 8384) for ConQuass, and 79.4% (6662 out of 8395) for zS. 

It is worth noting that since many sequences were added to the public databases in the last six years, it is possible that some of the improved performance is due to the increased evolutionary information available, making the residue conservation values more precise. However, we doubt this accounts for a large portion of the difference.

2. SUPPLEMENTAL FIGURES

Figure S1. The conservation-accessibility pattern of a model of intermediate quality (A) The model Frankenstein_TS3 for CASP7 target T0289, GDT-TS=28.59, colored by the ConSurf color map using the ConSurf-DB database. ConSurf colors 1-7 are semi-transparent. (Compare with the native structure and a very bad model for the same target in Figure 1). This figure was generated using UCSF Chimera (http://www.cgl.ucsf.edu/chimera/) (B) Distribution of residue accessibilities as calculated by Naccess for variable residues (cyan; ConSurf classes 1,2,3) and for conserved residues (purple; ConSurf classes 8,9).
[image: image1.png]W : 45 ¢ 7

Variable Conserved
~ Insufficient data

Density

0.005 0.010 0.015

0.000

Accessibilty (%)





Figure S2. Comparison of the performance of consensus-based, homology-based approaches and pure-single-structure methods on the CASP8 dataset. The methods chosen for the comparison are three representative consensus-based methods (ModFOLDclust (031), SAM-T08-MQAC (056), and Pcons_Pcons (239)), two single structure methods that use the structural models of homologs (SAM-T08-MQAU (365) and LEE (407)), the two best ranking pure single structure methods (QMEANfamily (082) and MULTICOM-REFINE (013)), and ConQuass, the method presented in this work (999, shown in gray). (A) Boxplots of the correlation values. The correlations were calculated only for models rated by all 8 methods. The boxplots were sorted by the mean correlation, indicated by the red dots. (B) Same as (A), when looking only at targets with the highest quality alignment, using the 20%-filter. Notice that ConQuass is ranked here below MULTICOM-REFINE (013), unlike in figure 4C, as the set of models used for the ranking was slightly different.
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Figure S3. The ability of the ConQuass score to rank decoys in the CASP8 dataset. This is an uncut version of Figure 4 from the main text. (A) Demonstration for target T0449. For each decoy, the GDT-TS (similarity to the native structure) is plotted versus the ConQuass score. The vertical line is the ConQuass score assigned to the native structure. The Pearson correlation for this target was 0.827. (B) Boxplots of the correlation values for the 22 MQAPs that ranked at least 20,000 models. The number signifying each MQAP (x axis) is the number assigned in the original CASP8 experiment (see http://predictioncenter.org/casp8). Also shown is the boxplot for the correlation values of ConQuass (999, gray). The correlations were calculated only for models ranked by all 23 MQAPs. The boxplots were sorted by the mean correlation, indicated by the black dots. (C) Same as (B), when looking only at targets with the highest quality alignment, using the 20%-filter. Although ConQuass is ranked first here, the specific ordering of the top ranking methods is irrelevant, as the correlation values achieved by ConQuass are not significantly higher than those achieved by MULTICOM-REFINE (013).
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Figure S4. Examples of proteins with high-quality multiple sequence alignment but with low compatibility between the structure and the evolutionary pattern. (A) Signaling protein Glnk1 (PDB: 2j9c). The bottom face of the protein is conserved, as it is the binding interface with the ammonia channel Amt1. (B) Ribosomal protein L14 (PDB: 1whi). Being a part of a much larger complex could explain why it has a large number of conserved and exposed residues. (C) Antibody bound to RNASE A (PDB: 2p45). Most of the antibody is conserved except for a variable patch at the interaction surface with the antigen. This figure was generated using PyMol (http://www.pymol.org/).
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Figure S5. The ability of the ConQuass score to rank decoys in the CASP7 dataset. (A) Boxplots of the correlation values for the 16 MQAPs that rated at least 15,000 models. The numbers signifying each MQAP are the numbers assigned in the original CASP7 experiment (Cozzetto, et al., 2007). Also shown is the boxplot for the correlation values of ConQuass (999, gray). The correlations were calculated only for models rated by all 17 MQAPs. The boxplots were sorted by the mean correlation, indicated by the red dots. (B) Same as (C), when looking only at targets with the highest quality alignment, using the 20%-filter.
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Figure S6. The relation between the ConQuass score assigned to the model and its quality. (A) Plot of the GDT-TS (similarity to the native structure) versus the ConQuass score for all models in the CASP7 dataset (black, Pearson correlation 0.758), and of the models with the highest quality alignment by the 50%-filter (blue, Pearson correlation 0.836), and by the less permissive 20%-filter (red, Pearson correlation 0.903). (B) Boxplots of the GDT-TS values for models in each ConQuass score quartile. For example, the median GDT-TS for the models scoring very low (below -0.041) is 18.5 and 50% of these models have GDT-TS values between 12.8 and 26.4. For the models scoring very high (above 0.12), the median GDT-TS is 73.3 and 50% of these models have RMSD values between 61.7 and 83.9.
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Figure S7. The effect of calculating the performance of each method on a different set of models. The correlation values of MULTICOM-REFINE (013) are significantly lower (p≈2.3e-07, Wilcoxon signed-rank test) than those of MULTICOM-CMFR (069). However, the performance difference is no longer significant (p>0.5) when the correlations for MULTICOM-REFINE are calculated for the subset of models also ranked by MUTICOM-CMFR.
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Figure S8. Correlation values for the integration MQAP versus (A) Circle-QA (B) QMEANfamily and (C) MULTICOM-REFINE. The values are shown for the targets ranked by both methods. The subset of the targets with a high alignment quality (using the 50% filter) is colored red. Notice that the cases where the integration lowers the score are almost always attributed to the targets where the alignment is of low quality.
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3. SUPPLEMENTAL TABLES
Table S1. Matrix showing the propensity of each accessibility-class with each conservation-class
	
	Conservation

	
	1
	2
	3
	4
	5
	6
	7
	8
	9

	Accessibility
	1
	-2.015
	-1.611
	-1.252
	-0.788
	-0.306
	0.172
	0.496
	0.625
	0.515

	
	2
	-1.565
	-1.208
	-0.924
	-0.524
	-0.159
	0.202
	0.426
	0.505
	0.438

	
	3
	-1.148
	-0.853
	-0.618
	-0.319
	-0.048
	0.175
	0.299
	0.372
	0.422

	
	4
	-0.730
	-0.432
	-0.284
	-0.104
	0.043
	0.125
	0.156
	0.188
	0.326

	
	5
	-0.349
	-0.140
	-0.047
	0.073
	0.113
	0.081
	0.007
	-0.026
	0.154

	
	6
	-0.014
	0.141
	0.165
	0.186
	0.145
	0.010
	-0.138
	-0.234
	-0.146

	
	7
	0.269
	0.337
	0.309
	0.258
	0.127
	-0.082
	-0.302
	-0.461
	-0.463

	
	8
	0.520
	0.472
	0.399
	0.265
	0.081
	-0.183
	-0.507
	-0.694
	-0.771

	
	9
	0.718
	0.567
	0.464
	0.253
	0.003
	-0.338
	-0.671
	-0.907
	-1.091

	
	10
	0.830
	0.572
	0.445
	0.214
	-0.055
	-0.403
	-0.744
	-0.970
	-1.247


Table S2. Optimal cutoffs found for several selected filtering degrees
	Attribute
	20%
	50%
	80%

	resnum
	resnum>=204
	numres>=112
	numres>=47

	%insig
	%insig<=0.01470588
	%insig<=0.03947368
	%insig<=0.09551537

	nseq
	nseq>=50
	nseq>=31
	nseq>=23

	nseq20
	nseq20>=50
	nseq20>=31
	nseq20>=10


Table S3. Overall correlation of all pure single structure groups, for all CASP8 targets ranked by these groups
	Number
	Name
	Correlation

	994
	ConQuass + MULTICOM-REFINE
	0.807479901

	013
	MULTICOM-REFINE
	0.796544036

	995
	ConQuass + QMEANfamily
	0.787112818

	82
	QMEANfamily
	0.769153016

	98
	GS-MetaMQAP
	0.766671396

	90
	QMEAN
	0.760912293

	69
	MULTICOM-CMFR
	0.758160617

	131
	MULTICOM-RANK
	0.743077266

	325
	Bilab-UT
	0.731794957

	232
	SIFT_consensus
	0.718445624

	199
	ModFOLD
	0.700548244

	469
	Pcons_ProQ
	0.6853601

	999
	ConQuass
	0.678431035

	396
	circle
	0.670232441

	146
	BMF_PP
	0.661666981

	117
	DISTILLF
	0.605560813

	245
	MUFOLD-QA
	0.604767573

	152
	Fiser-QA
	0.565986152

	94
	MODCHECK-HD
	0.562392573

	151
	SELECTpro
	0.518297129

	177
	Fiser-QA-COMB
	0.514115811

	308
	SIFT_SA
	0.499017288

	329
	Fiser-QA-FA
	0.353785257

	105
	ProtAnG_s
	0.145074717

	109
	qa-ms-torda-server
	0.097702759


Table S4. Comparison with the performance of Mihalek and coworkers on the Decoys’R’Us dataset. The left part (blue) shows the total number of decoys in each set, and the number of decoys scoring worse than the native structure by zS. The right part (green) shows the total number of decoys that could be downloaded from the Decoys’R’Us website, and the number of those scoring worse than the native structure by ConQuass
	pdb
	decoys
	z_S
	decoys
	ConQuass

	1ash
	29
	29
	29
	27

	1bab-B
	29
	8
	29
	18

	1col-A
	29
	29
	29
	18

	1cpc-A
	29
	4
	29
	29

	1ctf
	630
	393
	630
	561

	1dkt-A
	2000
	1511
	1994
	1994

	1ecd
	29
	22
	29
	24

	1emy
	29
	6
	29
	29

	1flp
	29
	28
	29
	11

	1hbg
	29
	10
	29
	29

	1hbh-A
	29
	15
	29
	20

	1hda-A
	29
	9
	29
	22

	1hda-B
	29
	25
	29
	21

	1hlb
	29
	5
	29
	26

	1hlm
	29
	1
	29
	3

	1hsy
	29
	12
	29
	23

	1ith-A
	29
	1
	29
	3

	1lht
	29
	21
	29
	25

	1mbs
	29
	8
	29
	14

	1myg-A
	29
	10
	29
	28

	1myt
	29
	12
	29
	22

	1ubi
	300
	267
	300
	298

	2cro
	674
	528
	673
	642

	2dhb-A
	29
	13
	29
	16

	2dhb-B
	29
	24
	29
	25

	2lhb
	29
	6
	29
	14

	2pgh-A
	29
	13
	29
	8

	3icb
	653
	579
	653
	572

	4icb
	500
	484
	499
	490

	1beo
	2000
	1998
	1997
	1997

	1bl0
	971
	591
	971
	700

	Total
	8395
	6662
	8384
	7709
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