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Multiple sequence alignments (MSAs) are the workhorse of molecular evolution and structural 
biology research. From MSAs, the amino acids that are tolerated at each site during protein 
evolution can be inferred. However, little is known regarding the repertoire of tolerated amino 
acids in proteins when only a few or no sequence homologs are available, such as orphan and 
de novo designed proteins. Here we present EvoRator2, a deep-learning algorithm trained on 
over 15,000 protein structures that can predict which amino acids are tolerated at any given 
site, based exclusively on protein structural information mined from atomic coordinate files. 
We show that EvoRator2 obtained satisfying results for the prediction of position-weighted 
scoring matrices (PSSM). We further show that EvoRator2 obtained near state-of-the-art 
performance on proteins with high quality structures in predicting the effect of mutations in 
deep mutation scanning (DMS) experiments and that for certain DMS targets, EvoRator2 
outperformed state-of-the-art methods. We also show that by combining EvoRator2’s 
predictions with those obtained by a state-of-the-art deep-learning method that accounts for the 
information in the MSA, the prediction of the effect of mutation in DMS experiments was 
improved in terms of both accuracy and stability. EvoRator2 is designed to predict which 
amino-acid substitutions are tolerated in such proteins without many homologous sequences, 
including orphan or de novo designed proteins. We implemented our approach in the EvoRator 
web server (https://evorator.tau.ac.il).
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Introduction

Sequence variation in proteins stems from the filtering of random mutations by evolutionary 
pressures that act to maintain protein structural and functional integrity [1,2]. Characterizing 
the residue-level distribution of substitutions is an important task in evolutionary studies, with 
implications in variant prioritization for clinical diagnostics, de novo protein design, and 
identification of functional sites [3,4]. Experimental methods such as deep mutational scan 
(DMS) are used to quantify the effect of non-synonymous mutations on a specific phenotypic 
outcome [5-7]. Such approaches are costly and time consuming and cannot be applied to 
analyze the large number of protein records accumulating in public databases. 

The most common approaches for predicting residue-level tolerated sets of amino acids heavily 
rely on multiple sequence alignments (MSA): given a query sequence, homologous sequences 
are identified and aligned. The various existing methods mainly differ in how they process the 
resulting MSA to make predictions. Methods such as SIFT [8] and EVCouplings [9] totally 
depend on MSAs, while methods such as PolyPhen2 [10] combine both conservation and 
structure to make predictions. The highly accurate predictions obtained by methods such as 
DeepSequence [11] and EVE [12], depend on the extraction of MSA-based latent variables, 
which are informative for estimating the probability of observing each substitution. These 
methods implement deep-learning algorithms that require separate training for each protein 
family of interest, which can be computationally demanding in large scale analyses. The 
requirement for an alignment means that residue-level distribution of allowable substitutions 
cannot be accurately predicted for proteins with a few or no homologs, including orphan 
proteins, de novo designed proteins, and newly emerged viral proteins. In other cases, the 
information content of the MSA in the presence of indels is the culprit, e.g., it is difficult to 
predict the effect of substitutions in an alignment site that is mostly gap characters [1]. Novel 
sequence-based, MSA-independent approaches rely on protein language models that are 
trained on raw sequence data. Such models are huge in size, require delicate fine tuning, depend 
on multiple, slow training steps, and require suitable hardware [13]. The most accurate 
predictions are obtained by language models such as Tranception [14]. However, prediction 
accuracy still highly depends on the number of similar sequences a given protein has in public 
sequence databases.

The primary determinant of site-specific distribution of substitutions is considered to be the 
structural context of the site in question [1,2,15,16]. Purifying selection is expected to act on 
sites with many intramolecular interactions. Such sites are typically located at the tightly-
packed core of the proteins [17,18]. Thus, only substitutions to amino acids with similar spatial 
physicochemical properties as the wild-type are expected in such sites. In contrast, sites that 
face the solvent are generally expected to tolerate a much larger number of substitutions. In 
case of sites that are also involved in intermolecular interactions, the type of selection regime 
and its effect on the distribution of substitutions is context dependent [1,2,19]. For example, 
strong purifying selection is expected to act on catalytic sites [20], allosteric sites [21], post-
translationally modified sites [22], and on sites essential for complex formation [23]. Positive 
selection due to a changing environment is expected to affect sites that are directly involved in 
the selected function of a given protein-coding gene [22]. Examples include sites in viral 
proteins under drug pressure [24], B-cell epitopes [25], and toxins [26]. Thus, the residue-level 
distribution of substitutions observed across protein families evolved under constraints either 
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on intramolecular or intermolecular interactions, or a combination of both. A complete 
description of these constraints requires knowing all interaction partners and conformational 
states of a given protein. In most practical cases such data are impossible to obtain. By 
identifying disagreements between empirical and structure-based expectations on the 
distribution of substitutions at residue level, one can potentially identify sites that are involved 
in biologically significant interactions [1].

Predicting the set of tolerated amino acids at each position based on structure only can be 
obtained using methods such as FoldX [27] and Rosetta [28]. These methods use force-field 
models to estimate variants’ impact on structural stability. Machine-learning (ML) based 
models can serve as an alternative to force-field calculations, as they are capable of 
generalizing to unseen protein families. We recently introduced EvoRator, a web server that 
implements an ML-regression algorithm to predict residue-level evolutionary rates based on 
protein structures [29]. Here we present EvoRator2, a user-friendly web server that exploits 
deep learning to predict the per-site distribution of substitutions based on protein structure. 
EvoRator2 utilizes a unique structure-based representation that is created by combining a set 
of physicochemical and structural characteristic (e.g., amino-acid composition, relative solvent 
accessibility, secondary structure) with features of atoms and amino acids that are based on 
their network topology and on the spatial-chemical patterns of their neighbors. EvoRator2 is 
designed to predict per-site distribution of substitutions without using MSAs. Discrepancies 
between the MSA-based and structure-based estimates are inferred to reflect functional 
constraints beyond those imposed by the structure. Using a previously published standardized 
experimental DMS data, we demonstrate that EvoRator2 can accurately predict substitutions. 
We study the performance as a function of the three-dimensional (3D) structure accuracy. We 
also show that when EvoRator2 is integrated with a method that relies on MSAs (generating 
the EvoRator2-MSA model), the combined model outperforms existing approaches, especially 
for proteins characterized by inexistent or non-informative MSAs. 

Methods

Data preparation. We extracted features for a set of 20,691 unique chains (obtained from 
19,683 randomly chosen distinct PDB files) with matching position-weighted scoring matrices 
(PSSMs) mined from the ConSurf-DB [30–37], which stores over 100,000 unique chains, their 
MSAs and conservation scores at the single residue level. The PSSM of each record in 
ConSurf-DB is based on an MSA of a non-redundant set of homologues obtained by clustering 
candidate homologues sequences at 95% using CD-HIT [36-38].   

Features. EvoRator2 exploits features extracted by ScanNet [39,40] and EvoRator [29] to 
predict the site-specific distribution of allowable substitutions. Here we briefly describe these 
features. Both ScanNet and EvoRator extract features from PDB files. These features are 
extracted from the biological assembly file if it exists. ScanNet implements a geometric deep 
learning algorithm that builds representations of atoms and amino acids based on the spatio-
chemical arrangement of their neighbors. These representations implicitly capture structural 
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parameters such as solvent accessibility, secondary structure, and surface convexity. EvoRator 
extracts these and other features directly, including glycosylation sites, binding sites, and 
protein-protein interaction sites, as well as features extracted from graph-based representations 
of proteins, in which the nodes represent Cα atoms, and the edges represent interactions between 
Cα atoms that are within less than 7 Å from each other. We used Scikit-learn [41] for processing 
the above features as follows: duplicate and constant features are removed; features with 
missing values are filled with the median of their existing values; categorical features are one-
hot encoded, and numerical features are scaled by subtracting the mean of the feature from 
each of its values and dividing by the standard deviation of the feature. In total, we used 515 
features (Supplementary Table S1). 

Evaluation criterion. The goal of our algorithm is to predict the spectrum of allowable 
substitutions at each site. This spectrum is mathematically described as a probability 
distribution over the 20 amino acids, at each site. The probability of each amino acid at a 
specific site is henceforth referred to as the score of that amino acid. To train and estimate 
model performance, true probabilities of amino-acids at each site should be known. In the 
following we assume that amino-acid frequencies obtained by analyzing large MSAs reflect 
close enough estimates to the true probabilities, and we term them “true” scores. Accuracy is 
then estimated in terms of the Spearman’s rank correlation coefficient ρ between the model 
scores and the true scores. For benchmarking, model scores are also compared to scores 
obtained from DMS experiments (see below).

Deep learning. For predicting the site-specific distribution of substitutions using the above 
data, we trained a feed-forward multi-layer perceptron architecture with back-propagation [42] 
to minimize the Kullback-Leibler divergence [43] between the predicted and true scores of 
each site, using the Keras [44] implementation in the deep learning library Tensorflow [45]. 
The model consists of an input layer that has 515 nodes—one node per feature, followed by 
two hidden layers of 515 nodes with a rectified linear unit activation function, with l2-
regularization on each layer’s weights ( 10-4, selected based on previous experience λ = 5 ×
with similar datasets), and batch normalization following each hidden layer. Such a design is 
sufficient to approximate most discrimination tasks using less computational resources 
compared to a network with more hidden layers [46]. Finally, there is an output layer that has 
20 nodes with softmax activation function that predicts a vector of residue probabilities. To 
avoid overfitting and in order to reliably estimates of model performance, we partitioned our 
data to training, validation and test sets, comprising 16,135 proteins, 360 proteins, and 711 
proteins, respectively. This partition is based on the CATH [47–49] category of each record 
(proteins with unknown CATH category were excluded from this analysis), such that similarly 
structured proteins are included in either the training, validation or test set. The model was 
trained for a maximum of 50 epochs. An early stopping condition of 10 epochs interrupted 
training early if no improvement was observed in the validation set in terms of the Kullbeck-
Leibler divergence after 10 training epochs. In practice, the performance on the validation set 
did not improve after 10 to 15 epochs, so we retrained the final model over the complete dataset 
for 10 epochs. 

Benchmarking. For benchmarking EvoRator2, we used the ProteinGym substitution 
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benchmark [14], a standardized dataset of 72 proteins targeted in 88 different DMS assays. 
Note that DMS data are only used for testing the performance of the model, not for training. 
The ProteinGym dataset summarizes the performance of several MSA-based and large 
language models over a wide range of protein functions, taxonomic groups, and fitness 
measures. In ProteinGym, the DMS score is positively correlated to fitness, and the 
performance is quantified in terms of Spearman’s rank correlation coefficient ρ and the area 
under the ROC curve (AUC) between model scores and the experimental measurements as the 
standard measure of model performance. We evaluated EvoRator2’s performance using 
AlphaFold [50] predicted structures, because they are obtained for full-length proteins and 
therefore can be more readily mapped to the sequences that are targeted in DMSs. We managed 
to obtain the predicted structures of 46 proteins targeted in 59 DMSs from AlphaFold DB [51]. 
This set of DMSs was used to evaluate the performance of EvoRator2. For model comparisons, 
we considered only those AlphaFold DB records whose sequences perfectly match the ones 
that were targeted in the DMS experiments. Based on this criterion, we used a subset of 48 
DMSs of 38 proteins for model comparisons. The frequencies predicted by EvoRator2 were 
transformed to standard DMS score [11] using the following formula: 

Predicted DMS score = log
𝑃(𝑥𝑚𝑢𝑡) +  𝜀
𝑃(𝑥𝑤𝑡) +  𝜀  , 𝜀 = 0.00001

Where ) and  represent the predicted frequencies for a mutated and wild-type 𝑃(𝑥𝑚𝑢𝑡 𝑃(𝑥𝑤𝑡)
protein sequences, respectively. 

Overview of EvoRator2 web server

EvoRator2’s approach is implemented as a public web server accessible from: 
https://evorator.tau.ac.il/. The web server provides an estimate of the site conservation using 
the algorithm described in EvoRator’s paper [29] and the allowable substitutions using the 
algorithm described in this study (EvoRator2). EvoRator2 is implemented in Python 3.7. The 
web server jobs are processed on ProLiant XL170r Gen9 servers, equipped with 128 GB RAM 
and 28 CPU cores per node. 

Results

EvoRator2 is tailored to predict the per-residue distribution of substitutions based on protein 
structure and to map substitution profiles that cannot be well explained using structural 
information alone. The features for our machine-learning approach are extracted from ScanNet 
and EvoRator. For training and evaluating the predictive performance of EvoRator2, we used 
a dataset of 20,691 unique chains with their corresponding residue scores that we mined from 
ConSurf-DB. We evaluated the predictive performance of EvoRator2 in terms of the 
Spearman’s rank correlation coefficient ρ between true (MSA-based) and predicted (structure-
based) substitution scores. EvoRator2 showed satisfying performance over the test dataset 
(Spearman’s ρ = 0.610). We observed a minor difference between the performance of the 
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different methods on the training (Spearman’s ρ = 0.617), validation (Spearman’s ρ = 0.621) 
and test sets, indicating minimal overfitting. The predictions and features for the test data are 
provided in Supplementary Data S1 (https://doi.org/10.5281/zenodo.7709583).

For benchmarking EvoRator2, we examined the relationship between its predictions and scores 
obtained in DMSs, which are considered as a gold standard for assessing the performance of 
protein models [52]. The DMS data were taken from the ProteinGym benchmark for 
substitutions [14]. We used EvoRator2 to predict the residue-level scores for 46 predicted 
AlphaFold structures of proteins that were targeted in 59 DMS experiments (Supplementary 
Data S2, https://doi.org/10.5281/zenodo.7709583). EvoRator2 performance varied widely 
across datasets, ranging from no correlation to high correlation (Figure 1, Figure S1 and 
Supplementary Data S3). Interestingly, in a few cases, EvoRator2 predictions were better 
correlated with the experimental DMS data compared to state-of-the-art deep learning methods 
(Supplementary Data S4). We suspected that this variation reflects differences in the quality of 
structures predicted by AlphaFold. The predicted aligned error (PAE) is a primary quality 
measure of AlphaFold structures [50]. Briefly, PAE, which is calculated for each pair of 
residues in the predicted structure, estimates the confidence in domain packing and large-scale 
topology. The lower the PAE score is, the higher the confidence in the relative position and 
orientation of different parts of the model. We therefore examined the relationship of the mean 
PAE (i.e. PAE averaged across all residue pairs) to EvoRator2’s performance (Figure S2A). 
We found that EvoRator2’s predictive performance increases in terms of accuracy and 
robustness as the mean PAE decreases, reaching optimal performance at mean PAE values that 
characterize well-predicted structures (mean PAE < 5). We acknowledge that fact that some 
sequence and structure similarity may exist between our training set and the ProteinGym test 
set. However, we found no significant correlation between EvoRator2’s performance and the 
sequence identity to the most similar protein in the training set (Figure S2B).

We further hypothesized that the integration of structural information and MSA can improve 
the accuracy of current methods, presumably by compensating for potential biases introduced 
by poorly aligned regions or insufficient or excessive divergence in the MSA [1]. To test this 
hypothesis, we compared the predictive performance of an MSA based model to that of an 
integrated structure and MSA based model, across the ProteinGym substitution benchmark 
[14]. The MSA based model includes predictions supplied by an ensemble of Tranception and 
EVE models (ETEVE) [14]. This model was chosen as baseline model for the analysis, because 
it is based only on the predictions made by the most accurate prediction method reported in 
ProteinGym substitution benchmark, and it requires MSA data to make a prediction [14]. The 
second model integrates predictions supplied by EvoRator2 and ETEVE (EvoRator2 + 
ETEVE), which require structural and MSA data, respectively. The input of the EvoRator2 + 
ETEVE model is the pair of vectors for a specific position for all possible substitutions 
(EvoRator2 scores, ETEVE scores). The output is a single score-vector for each substitution. 
The relationship between this pair and the final score is modeled separately for each protein. 
Specifically, a linear regression model is assumed, in which the EvoRator2 and ETEVE vectors 
are transformed by restricted cubic splines with five knots [54]. This allows for accounting for 
the non-linear association between the input and the output (Figure S1) [53]. In some cases, 
the output of DMS experiments is binary, i.e., for each substitution whether or not it is 
pathogenic [14]. In this case, the linear regression model is replaced by a logistic regression 
classification model using the same input. To ensure comparability with respect to input data, 
only those DMSs reporting targeted sequences that are identical to the sequences of the 

https://doi.org/10.5281/zenodo.7709583
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structures that we obtained from AlphaFold DB [51] were considered for model comparison 
(N = 48). Since experimental DMS scores covering the same genes cannot be easily compared 
[6], standard model evaluation procedures such as cross validation or bootstrap cannot be 
reliably carried out using DMS data pooled from different sources. To overcome this issue, and 
to correct for the “optimism” stemming from fitting a model to the same data used to test it, for 
each DMS and for each model, we evaluated and compared the predictive accuracy (measured 
in R2 or AUC) of the two models after averaging across 1,000 bootstrap samples from the same 
dataset. The EvoRator2 + ETEVE model slightly but significantly outperformed the ETEVE 
model for the majority of proteins, both in terms of optimism corrected R2 (Wilcoxon signed-
rank test, p = 5.4 × 10-7) and AUC (Wilcoxon signed-rank test, p = 3.5 × 10-6), ranging from 
small to large gains in these metrics for most and some DMSs, respectively (Figure S2). We 
hypothesized that this variation reflects differences in the quality of the input MSA. One such 
quality measure is the number of effective sequences in the MSA (Neff) [52], which estimates 
the information content of a given MSA. To test our hypothesis, we compared the relationship 
of MSA quality to performance in the two models by plotting Neff against the optimism 
corrected R2 and AUC that were obtained by each model (Figure S4). We observed that 
EvoRator2 + ETEVE outperformed ETEVE across a wide range of Neff values, and that 
substantial gains in optimism corrected R2 and AUC tend to be concentrated at lower Neff levels 
values. Notably, EvoRator2 + ETEVE also provides narrower confidence intervals compared 
to ETEVE across a wide range of Neff values, which is always desirable. 

Taken together, these results suggest that a high-quality structure can serve as an effective 
alternative to MSA-based methods when few or no homologs can be found, and that an 
integrated structure-MSA based prediction should be preferred over MSA-based or structure-
based prediction.

Discussion
An MSA with many diverged sequences may well capture the structural constraints that drive 
the protein evolution. However, a large number of factors may introduce errors and biases in 
such inference. First, MSAs are error prone and some regions within the MSA are less reliably 
aligned compared with others [55]. Second, the demand for a high number of diverged 
sequences is often unattainable. For example, the number of protein structures in the PDB that 
have few or no sequence homologs is constantly rising, requiring the development of structure-
based protein models. Third, in positions that experienced insertion and deletion events, 
especially those that arise due to insertions in lineages leading to a single protein, there is no 
information in the MSA to infer the selective forces. Fourth, sequences within MSAs are not 
random samples from the space of protein sequences. Rather, they are connected by an 
underlying phylogenetic tree. Some sequences are sampled from closely related species, while 
others from diverged ones. This sampling bias may be corrected by accounting for the tree 
topology and its associated branches while computing the selective constraints. However, the 
phylogeny is also subjected to uncertainty, and thus possible errors in the reconstructed 
phylogeny may lead to erroneous inference of the selective forces. While EvoRator2 is trained 
on MSA-derived scores, we expect that averaging over many unrelated examples attenuates 
these biases.
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Here we present EvoRator2, a web server that implements a neural network that was trained 
over thousands of protein structures to predict the distribution of substitutions at the residue 
level, without the need for an input MSA. EvoRator2 exploits a rich structural signature 
consisting of physicochemical, geometrical, and graph-based features, which capture the 
various constraints that act on a protein 3D structure. When MSA information is available, 
contrasting the two types of predictions may provide additional information regarding the 
evolutionary constraints, e.g., selective forces that stem from functional rather than structural 
constraints.

EvoRator2’s predictions are in good agreement with experimental DMS data. We have shown 
that DMS profiles can be well predicted by integrating the predictions of EvoRator2 with those 
of state-of-the-art MSA-based and sequence-based methods. It is possible that the accuracy of 
the prediction would further increase with more data and other deep-learning models, 
particularly graph neural networks [56]. However, the accuracy of the alignment and 3D 
structure, as well as the accuracy of the effect of substitution patterns on fitness (as determined 
by DMS or other methods), can also affect the accuracy of the prediction. The relevant 
contribution of each factor awaits further characterization. 

Structure-based sequence generative models such as ESM-IF1 [57] and ProteinMPNN [58] can 
score substitutions, with some success. These models generate sequences that agree with the 
structure, and thus, can predict allowable substitutions. Our methodology, in contrast, is trained 
to predict PSSMs rather than sequences. A single PSSM is far more informative than a single 
sequence, and PSSM prediction can be readily compared to MSA-derived PSSMs. More 
generally, protein structure and sequence data are combined in methods such as 3DCOFFEE 
[59] to generate high-quality MSAs. Moreover, the accuracy of the MSA increases as the 
number of combined structures increases. Such structure-aware MSAs can potentially further 
improve the performance of MSA-based methods in scoring substitutions. Our results 
demonstrate that for scoring substitutions at the residue level, a single, high-quality structure 
can sometimes be as informative as an MSA, which typically considers hundreds of sequences. 
A further gain in performance would likely be obtained by combining multiple 
structures/conformations, raw sequence data, and MSAs for developing the next generation of 
protein models. 

The EvoRator2 approach is combined within our EvoRator web server, which is freely 
available for the scientific community at https://evorator.tau.ac.il. The user interface is intuitive 
and provides both visual and tabular outputs.
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Graphical abstract

Figure 1. The relationship between EvoRator2’s predictions and experimental DMS data. DMS scores 
for the GFP protein (reflecting fluorescence levels) were taken from ProteinGym. Ploted are the DMS scores 
as a function of EvoRator2 scores (see Figure S1 for more proteins). A generalized additive model (GAM) with 
smooth functions (solid curve) with 95% confidence bands (in gray shade) is used the relationship between 
EvoRator2’s predictions and experimental DMS scores. The scattered data points were binned using hexagonal 
binning because of the large sample size. 
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Highlights

- Predicting site-specific amino acid substitutions in a protein is important for multiple and 
diverse applications in biomedicine, including rational drug design, protein engineering, 
and identification of pathogenic missense mutations. 

- EvoRator2 exploits deep learning and protein structural information to predict such per-
site sets of tolerated amino acids.

- EvoRator2 extracts diverse features from protein structures at different scales, from atoms 
to amino acids.   

- EvoRator2 can analyze proteins for which only few or no homologous proteins can be 
found, e.g., for orphan and de novo designed proteins.

- EvoRator2 achieves near-state-of-the-art performance for the prediction of the effect of 
mutations in deep mutation scanning experiments.
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